Rutgers University: Algebra Written Qualifying Exam January 2017: Problem 5

Exercise. Let p be prime and G be a p-group. Let X be a finite set with |X| not divisible by p. Suppose G acts on X. Prove that $\exists x \in X$ with orbit $G \cdot x = \{x\}$, that is, the action of G on X must have at least one fixed point.

Solution. $orb(x) = \{gx : g \in G\} \subseteq X$ $stab(x) = \{g \in G : gx = x\}$ and **Orbit Stabilizer Theorem:** If G is a finite group acting on X then $|G| = |orb(x)||stab(x)| \qquad \forall x \in X$ Assume, for contradiction, that $\forall x \in X$, $orb(x) \neq \{x\}$. In other words, |orb(x)| > 1. By the Orbit Stabilizer Theorem, $p^{k} = |G| = |orb(x)||stab(x)| \implies |orb(x)| \mid p^{k}$ $\implies |orb(x)| = p^{j}$ |orb(x)| + p $|orb(x)| = p^{j}$ $0 < j \le k$ $\forall x \in X$ **Class Equation:** If G a group acting on finite set X then if $X_0 = \{$ fixed points of the action G on $X\}, \quad \mathcal{O}_1, \ldots, \mathcal{O}_r =$ orbits of size greater than 1 and for each \mathcal{O}_i , let $x_i \in \mathcal{O}_i$ and G_i be the stabilizer of x_i in G, i.e. $G_i = \{g \in G : gx_i = x_i\},\$ Then $|X| = |X_0| + \sum_{i=1}^r \frac{|G|}{|G_i|}$ $|X_0| = 0$ by our assumption, and $\sum_{i=1}^r \frac{|G|}{|G_i|} = \sum_{i=1}^r |\mathcal{O}_i|$ by the Orbit Stabilizer Theorem $\implies |X| = |X_0| + \sum_{i=1}^r \frac{|G|}{|G_i|} = \sum_{i=1}^r |\mathcal{O}_i|, \text{ where } \mathcal{O}_1, \dots, \mathcal{O}_r \text{ are the orbits for } G \text{ acting on } x_i$ We showed earlier that $|orb(x)| = p^j$ where $0 < j \le k$ for all $x \in X$ $\implies |\mathcal{O}_i| = pm_i, \qquad \text{for } i = \{1, \dots, r\}$ $\implies |X| = \sum_{i=1}^{r} |\mathcal{O}_i|$ $=\sum_{i=1}^{r}pm_{i}$ $= p \sum_{i=1}^{r} m_i$ $\implies p \mid |X|$, which is a contradiction since |X| is not divisible by p $\implies \exists x \in X \text{ with } orb(x) = \{x\}$