Rutgers University: Algebra Written Qualifying Exam
January 2017: Problem 5

Exercise. Let p be prime and G be a p—group. Let X be a finite set with |X| not divisible by p.
Suppose G acts on X. Prove that 3z € X with orbit G - x = {x}, that is, the action of G on X
must have at least one fixed point.

orb(z) = {gz : g € G} C X and stab(x) = {9 € G : gz = «z}
Orbit Stabilizer Theorem: If GG is a finite group acting on X then

|G| = |orb(x)||stab(x)]| Ve e X

Assume, for contradiction, that Vo € X, orb(z) # {z}. In other words, |orb(z)| > 1.
By the Orbit Stabilizer Theorem,

" = |G| = |orb()||stab()] = lorb(a)| | p*
— lorb(z)| = p’ 0<j<k VzeX

Class Equation: If G a group acting on finite set X then if

Xy = {fixed points of the action G on X}, Oq,...,0, = orbits of size greater than 1

and for each O;, let z; € O; and G; be the stabilizer of z; in G, i.e. G; = {g € G : gz; = z;},
Then
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| Xo| = 0 by our assumption, and » \‘G ” = |O;| by the Orbit Stabilizer Theorem
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= |X|=|Xo| +>_ ||G || = |0;|, where Oy,..., O, are the orbits for G acting on z;
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We showed earlier that |orb(z)| = p’ where 0 < j < k for all x € X
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= p | |X], which is a contradiction since | X| is not divisible by p
= Jdr € X with orb(z) = {z}




